
The Black Death was one of the most devastating pan-
demics in history. Beginning in 1347, the plague took
just three years to spread from Constantinople in west-
ern Turkey to Italy and then on to the rest of Europe,
leaving nearly a quarter of the continent’s population
dead in its wake. Historical studies confirm that the dis-
ease diffused smoothly, generating an epidemic front
that travelled through the continent as a continuous
wave at a rate of about 200–400 miles per year.

In 14th-century Europe few means of transport were
available and travellers could cover only relatively short
distances in a day. The advent of modern transporta-
tion has dramatically altered this picture, speeding up
disease transmission significantly. For example, the
influenza pandemic of 1918 took just one year to spread
from its US or European source to isolated Pacific
islands, while the 1957 flu virus swept the globe in about
six months.

On 11 June 2009 the World Health Organization
(WHO) declared that a new virus, known as H1N1
influenza or “swine flu”, had become the first pandemic
of the 21st century. This time, only two months passed
between the first international alert and the WHO’s
announcement. From a scientific and public-health
perspective, such rapid transmission posed an unprece-
dented challenge: we and other groups working at the
interface between physics, epidemiology and compu-
tational science needed to track the evolution of the
pandemic in real time. Under these circumstances,
there is a large degree of uncertainty in what will hap-
pen. How fast will the virus spread to new countries?
What will be the impact on the population? How dan-
gerous is it? And, most importantly, what weapons do
we have to fight it?

As an interconnected, mobile society, we face a
number of disadvantages in combating pandemics.
Fortunately, we also have some advantages over our

predecessors. These include not only significant
progress in medical science, but also a powerful new
epidemic-fighting weapon: computational models
derived from network science, mathematical epi-
demiology and the statistical physics of reaction-dif-
fusion processes. In the words of evolutionary biologist
Andrew Dobson, models are now “as crucial in the
study of infectious diseases as are microscopes, stetho-
scopes and the tools of molecular diagnosis”.

Models can be used to assess the impact of epidemics
and pandemics on human health, and to predict the
geographical spread of a disease, the expected number
of cases and the timing of an epidemic’s peak. Nu-
merical results from these models can help alert health
officials, guide planning for social-distancing measures
like school closures, and suggest strategies for the de-
velopment, production and administration of vaccines.
They can also allow public-health experts to assess the
impact that all these interventions might have in miti-
gating the pandemic.

The role of physics
Physicists have long used computational approaches
to solve problems involving a large number of degrees
of freedom, and can now simulate material processes
and physical phenomena on a wide range of scales. It
is now almost routine to study, say, fracturing processes
in materials by simulating over a billion atoms or to
solve evolution equations for six billion finite elements
in plasma fluids. Furthermore, the advent of ab initio,
Monte Carlo and other simulation techniques in areas
such as quantum chemistry, molecular dynamics and
materials science has made it possible to calculate the
behaviour of single atoms or aggregate states of mat-
ter from first principles.

Given these successes, it is natural to wonder why 
we are at a far more primitive stage in the quantitative
forecasting of how newly detected emerging diseases
(or even seasonal influenza) will evolve. The basic dif-
ference is that even though the simulation of six billion
human beings is in principle computationally feasible,
the models used in epidemic and contagion processes
have to include social and behavioural factors, not just
the (comparatively simple) physical laws governing
fluids or atomic motion. So, while the theoretical foun-
dation required to approach the spread of diseases
computationally has been in place for a long time,
progress has been hindered by a lack of data on how
people interact, travel and behave – as well as on how
communities are structured, and how they react to

Quick and easy global air travel aids the spread of infectious diseases like the current H1N1 flu pandemic,
and makes modelling them a complicated task. But as Vittoria Colizza and Alessandro Vespignani
explain, physicists and computer scientists are at the forefront of such studies, using tools developed 
from fields such as statistical mechanics and complex networks
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The flu fighters

● Modern pandemics spread more quickly and less uniformly than in the past,
thanks to the global air-transportation network and the complex and
interconnected nature of our society

● Modelling the spread of new infectious diseases requires theoretical and
computational models that take into account physical and biological principles
plus social and behavioural factors

● A range of new tools for simulating influenza-like illnesses has been developed in
recent years, allowing researchers to predict how events like the current H1N1 flu
pandemic will evolve
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environmental, political, technological and cultural
factors. All these layers – from the single individual to
the global society and its surrounding environment –
interact at multiple scales, thereby increasing the com-
plexity of the phenomena to be modelled and creating
formidable obstacles to the development of predictive
computational approaches.

The last decade has, however, witnessed a sharp in-
crease in our capacity to gather these data. This is
mostly because the boundaries between real-world
social behaviour and the cyberworld have started to
disappear. Devices like mobile phones and personal
digital assistants produce detailed traces of our daily
activities. Websites have sprung up to record data, such
as the dispersal of banknotes that can be used to infer
human interactions and mobility, as shown by Dirk
Brockmann and co-workers (see article on page 31).
This huge mass of data is changing our understanding
of a wide range of phenomena by producing quantita-
tive descriptions of large-scale social systems.

As a result of this data revolution and increased com-
puter-processing power, researchers are now begin-
ning to integrate large-scale datasets into models of
mathematical epidemiology. This means that we are
finally in a position to move from analysing the “social
atom”, or small social groups, to analysing “social
aggregate states” made up of millions of people. But in
making this transition – which is equivalent to the shift
from atomic and molecular physics to the physics of
bulk matter – we must confront the complexity of the
system that emerges from the collective behaviour of
a large network of interacting units.

Networks that trace the activities of individuals,
social patterns, transportation fluxes and population
movements all exhibit large-scale non-uniformity that
emerges spontaneously as the system evolves. The sta-
tistical distributions characterizing the fluctuations in
these networks are generally “heavy-tailed”, meaning
that their standard deviations are extremely large –
there are no “typical” values for many of the quantities
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of interest. For example, the distribution that defines
the probability that each node in the system (repre-
senting anything from an individual to a country, de-
pending on the model) is connected to k neighbouring
nodes is often approximated by a power-law decay.
This indicates that there is an appreciable probability
that some nodes may have orders of magnitude more
connections than the “average” value of k for the sys-
tem. A similar pattern is also observed for the intensity
of the flow between connecting links, transport flows
and other basic statistical quantities characterizing the
network structure.

Our ability to deal with such systems – where the
behaviour at any scale is the outcome of a complicated
interplay among processes that occur on very different
time and length scales – places an important constraint
on efforts to model emerging infectious diseases. For-
tunately, some of these same difficulties have already
been addressed in physical systems that feature phe-
nomena such as turbulence or critical behaviour (“tip-
ping points”). Tools that were developed for these
problems, including renormalization-group tech-
niques, timescale-separation approaches and homog-
enization methods are therefore viable candidates for
addressing the new challenge of pandemic modelling.

Network-based models
The network perspective itself is also creating new
mathematical tools and approaches. Both physicists
and epidemiologists have recognized the importance
of network structure in the spreading of diseases in a
globalized world and have developed models that
explicitly integrate multiscale mobility networks into
the description of emerging diseases. For example, al-
though the spread of the Black Death can be adequately
described mathematically using continuous differen-
tial equations with diffusive terms, in modern times 
the spread of epidemics is mainly determined by the
human-mobility networks that allow infected people to
travel across continents in less than a day (see figure 1).
The current swine-flu pandemic, therefore, cannot be

simply described in terms of diffusive phenomena but
must explicitly incorporate the spatial structure and
deep interconnectedness of today’s modern society.

In recent years, two major classes of models have
emerged that are particularly useful for simulating
influenza-like illnesses (figure 2). The first, known 
as the agent-based approach, keeps track of each indi-
vidual in a population in an extremely detailed way.
Agent-based models typically take into account the
fact that infection can spread among individuals by
contacts between household members, school and
workplace colleagues, and by random contacts in the
general population. One key feature of such models is
that they characterize the network of contacts among
individuals based on the socio-demographic structure
of the population.

The second scheme relies on meta-population mod-
els that consider the long-range mobility of people at
an inter-population level, while using coarse-grained
techniques at the level of individual interactions. In
such models, the world is divided into geographical
regions that define a sub-population network. Connec-
tions among each sub-population represent the fluxes
of individual humans due to the transportation infra-
structure. Infections evolve inside each urban area, and
this process is described by schemes in which the dis-
crete, stochastic dynamics of the individuals in different
compartments depends on the specific causes and ori-
gins of the disease and any containment interventions.

Of these two techniques, agent-based models pro-
vide a large amount of data, but their computational
cost and – most importantly – the need for very detailed
input data has, to date, limited their use to a few coun-
try-level scenarios. The structured meta-population
models, in contrast, are fairly scalable and can be con-
veniently used to provide worldwide scenarios and pat-
terns. Although the level of information that can be
extracted is less detailed than in agent-based models,
the spatial and temporal ranges, and the number of
realizations that can be computationally analysed, are
all much larger.

Epidemic spreading patterns changed dramatically after the development of modern transportation systems. In pre-industrial times, the spread of diseases was mainly a

spatial-diffusion phenomenon. When the Black Death was spreading through 14th-century Europe, only a few means of travel were available and typical trips were limited

to relatively short distances, lasting about a day. Historical studies confirm that the disease diffused smoothly, generating an epidemic front that passed as a continuous

wave through the continent at about 200–400 miles per year (left). The speed and pattern of the 2009 H1N1 “swine-flu” pandemic, in contrast, were radically different.

The swine-flu outbreak was declared the first pandemic of this century just two months after an international alert at the end of April 2009. The rapid spreading and the

patchy propagation pattern are shaped by human-mobility networks that allow infected people to travel across continents in one day or less (right).
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Modelling a pandemic in progress
While the recent growth of computational epidemiol-
ogy laid the foundations for a first-principles approach
to modelling epidemics, the swine-flu pandemic rep-
resents the first time that such computational methods
have been used to model the spread of an infectious
disease in real time. So far, the results have been ex-
tremely encouraging: state-of-the-art, large-scale com-
putational approaches have been able to capture the
spatio-temporal pattern of the unfolding epidemic
quite accurately, making projections up to three weeks
in advance. In particular, it has proved possible to anti-
cipate which urban areas or countries will observe 
the first local cases of the disease, and thus become
“hotspots” of the epidemic. Remarkably, different
methodologies – including the Northwestern Univer-
sity group’s proxy networks and our own approach,
which is based on the integration of real transportation
and mobility data (figure 3) – provide very similar pat-
terns and results. This indicates that the basic elements
considered in the models – population distribution and
human-mobility networks – are able to capture the
main features of the epidemic’s evolution.

The integration of large-scale mobility networks into
epidemic models is also providing new ways to esti-
mate the virus’ transmissibility and other basic param-
eters of the epidemic. Disease transmissibility, for
example, is usually indicated by the mean number of
secondary cases that a typical infected individual gen-
erates in a population with no immunity. This quan-
tity is often estimated using temporal data on the
number of cases detected in each country. However,
the accuracy of these data depends on whether cases
are spotted and properly reported to health author-
ities, and as a result they sometimes give a very mis-
leading picture of an evolving epidemic. For example,
several studies indicated that the official number of
swine-flu cases reported by the authorities in Mexico,
where the virus was first identified in April 2009, had
underestimated the actual impact of the epidemic by a
factor of 100–1000.

Using the mobility-network approach, we can instead
calculate transmissibility using data on the first handful
of cases detected in newly affected countries. These
data tend to be more accurate. This new approach is
possible because the chronology of the infection of new
countries is determined by two factors: the number of
cases generated by the epidemic in the originating coun-
try; and the mobility of people from this country to the
rest of the world. The mobility-network data are defined
from the outset with great accuracy, and we can there-
fore determine the parameters of the disease by calcu-
lating which values best fit the computational-model
results for the chronology of infection in new countries.
This strategy has already been used by the WHO Rapid
Pandemic Assessment Collaboration, Harvard Uni-
versity epidemiologist Marc Lipsitch and co-workers,
and by our own group to provide independent early esti-
mates of the transmissibility of the swine-flu pandemic
virus and the cumulative incidence in Mexico.

Another notable success for this strategy was that we
were able to predict several months in advance that the
swine-flu pandemic in the US and the Northern hemi-
sphere would peak between late October and late
November 2009. Being able to anticipate such peaks 
is crucial for testing possible vaccination scenarios,
since the effectiveness of mass-vaccination campaigns
depends on having vaccines available at the right time
and and in the right place. In this context, data-driven
computational models can shed light on the fuzzy pan-
demic future, and serve as in silico experiments on the
effectiveness of mitigation strategies.

More to be done
The swine-flu pandemic has shown that computational
tools can be used successfully and considered as a sup-
port tool in the complicated decision-making process
of public-health policies. Yet even before the current
pandemic started, simulation results had already fun-
damentally altered our understanding of the interplay
between social behaviour, infrastructures and the bio-
logical processes of infectious diseases. Thanks to

These schematic diagrams illustrate the assumptions made in several different approaches to modelling the spread of infectious diseases. Circles represent individual

people, while their colours correspond to specific stages of the disease. If a susceptible person (yellow) comes into contact with an infectious individual (red), they may

contract the disease and thus become able to transmit the infection to others. At the end of the infectious period, the individual recovers from the disease (grey circles)

and becomes immune to it. From left to right: homogeneous mixing, in which individuals are assumed to uniformly interact with each other at random; social structure,

where people are classified according to social/demographic information (e.g. age and gender) that suggest how likely they are to interact; contact-network models, in

which the detailed network of social interactions between individuals is explicitly considered, providing the possible virus-propagation paths; multilayer models, which

consider sub-populations coupled by movements of individuals, while assuming homogeneous mixing on the lower scale; and agent-based models, which recreate the

movements and interactions of individuals on very detailed spatial and temporal scales.
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analysis performed by Deirdre Hollingsworth, Neil
Ferguson and Roy Anderson at Imperial College Lon-
don; the computational approaches of Ben Cooper
and Joshua Epstein (based at the UK Health Pro-
tection Agency and the Brookings Institute, respect-
ively); and our own analytical and simulation work, by
2006 researchers knew that travel restrictions alone
would do little to contain or even slow down a global
epidemic. Using reaction-diffusion techniques, we
were able to show that the topology of the air-trans-
portation network and the traffic flow through it
meant that unless traffic restrictions were more than
90% effective, they would not delay the peak of a
pandemic by more than two to three weeks. And, of
course, such a drastic reduction in air travel would
quickly lead to social and economic disruption.

The same interconnectedness that makes draconian
travel restrictions impractical also reduces the effect-
iveness of any containment or mitigation strategies that
are limited to a single country. A traditional strategy
for epidemic control assumes that drugs will be used in
the very few countries in the world capable of amass-
ing stockpiles, but in a highly connected world such
localized mitigation is not as effective as a coordinated
global strategy. If wealthy countries are willing to share
a very small fraction of their stockpiles of antiviral
drugs with developing countries, in contrast, this would
hugely mitigate the impact of a pandemic.

In some ways, computational approaches to the
spread of epidemics are remarkably similar to the so-
phisticated simulation methods used in physics. In both
cases the “social atoms” interact, move and react in
constrained spaces. The final aggregate state (the social
system and its epidemiology) is the outcome of the prin-
ciples governing these microscopic processes. However,
a major difference has to be factored in. Unlike a phys-
ical system, the unfolding of the epidemic is going to
affect the individual’s behaviour. Indeed, even the
model predictions themselves – along with news about

the epidemic that is transmitted via a variety of media
sources – could affect the choices people make, like
deciding to travel less. This social adaptation to the
available information is part of the dynamic of the sys-
tem. Paradoxically, the model’s reliability produces,
through its predictions, a feedback on the model itself.

This issue is still uncharted territory. Current mod-
els focus largely on situations where steady-state data
are used to study the system under normal conditions,
in which the social behaviour is not altered or dis-
rupted. The next challenge is to develop formal models
that can deal with the prediction–adaptation feedback
loop and the possibility of their validation. This is some-
thing that goes beyond the physics of fluids, gases and
particles, or the “physics” of non-adapting social atoms.
And it is where a truly interdisciplinary collaboration
among physicists, epidemiologists, computer and social
scientists is inevitably needed. ■
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The Global Epidemic and Mobility model (GLEaM) that we use in our computational studies of epidemics is based on a meta-population approach in which the world is

divided into geographical census areas. These areas are connected by human-travel fluxes that correspond to transportation infrastructures and mobility patterns, and

that together form a network of interactions. The model is based on a highly detailed population database containing demographic data in census cells that cover the

entire Earth’s surface in a grid of 15 × 15 minute squares. To this, we add information on the long-range airline fluxes of people travelling to and from the airports listed in

the International Air Transport Authority (IATA) database, which account for more than 99% of commercial air traffic worldwide. We can then subdivide the world

population into a pattern of geographical areas centred on each IATA airport location, using a process known technically as a Voronoi decomposition. In addition to 

long-range air travel, GLEaM also incorporates short-range mobility patterns that correspond to ground movements and commuting patterns, based on data from more

than 30 countries on five continents. These patterns can then be used to calculate the effective interactions between sub-populations in neighbouring areas (termed

Voronoi tessels). Within each sub-population, the model assumes homogeneous mixing, with a compartmentalization that depends on the specific disease under study.

The figures above show an extract of GLEaM layers centred on the UK and Ireland. More information can be found at www.gleamviz.org.

3 The GLEaM model
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